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Abstract. Interpretive theoretical tools prove valuable in guiding the analysis of experiments in the realm
of atomic clusters. Here, we review basic elements of an analytic approach that makes it possible to find
and visualize the effective electrostatic potential and Coulomb correlations in multicenter problems. To
illustrate the utility of these concepts we apply them to exploring molecular-doped metallic clusters. This
study is aiming at a systematic, visual assessment of changes induced in screening, Coulomb correlation
and effective potential by varying the charge of the electronegative impurity and its position in the cluster
cage.

PACS. 36.40.Cg Electronic and magnetic properties of clusters – 36.40.Gk Plasma and collective effects
in clusters – 31.25.Qm Electron correlation calculations for polyatomic molecules

In a cluster, the energy of interaction of an atom with
its neighboring atoms may depend sensitively on the po-
sition of that atom in the cluster cage. It is evident that
a surface atom interacts with appreciably fewer neighbors
than does an interior atom. Under circumstances strictly
related to the specificity of the interaction in finite sys-
tems, it follows that the location of a foreign atom doping
an otherwise-homogeneous cluster can significantly affect
the total energy and properties of the cluster. In other
words, the structural isomers of a doped cluster involving
the location of the solute relative to the host atoms have
distinct energies. They may spread widely on the energy
scale.

An intriguing situation seems to appear for metallic
clusters in which the forces of cohesion are essentially pro-
vided by the delocalized electrons. In this case, the inter-
actions with a foreign atom inside the cluster are screened
by a mutual action of the delocalized electrons that redis-
tribute themselves around the impurity. The perturbation
of the valence electron distribution around the impurity
falls off with a characteristic length that depends on the
electron density. How the identity of the solute atom is
still reflected in the physical properties of a doped metal-
lic cluster is the question considered in some recent stud-
ies [1–3].

Working toward extracting insights from the proba-
bility distribution of the valence electrons, we developed
recently an analytic ansatz that allows us to find and visu-
alize the effective electrostatic potential and Coulomb cor-
relations in multicenter problems [1]. The method adopted
is a quasi-classical version of the density functional the-
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ory that accounts for the electron self-distribution in the
common cluster potential. While this is not at the same
level of studies of electron correlations in atoms, for which
very accurate wave functions have been used, it is a signif-
icant step beyond the “jellium” model, frequently invoked
in describing moderately large metallic clusters [4].

Here, we review elements of the concepts and tech-
niques employed in our approach. By using a generalized
partition function for valence electrons (the Bloch den-
sity matrix), the electron self-distribution in the common
potential V (r) is derived in terms of many-body pertur-
bation theory [5]. This approach produces the electron
density ρ(r) as a functional of V (r)

ρ(r) = ρ0 − k2
F

2π3

∫
dr′ V (r′)

j1(2kF |r − r′|)
|r − r′|2 , (1)

where kF is the Fermi wavevector, ρ0 is the free-particle
density, ρ0 = k3

F /3π2, and j1(x) is the first-order spher-
ical Bessel function. Equation (1) is valid for describing
metallic systems, i.e. systems with a high-density valence
electron gas. Under conditions stipulated in reference [1],
we can use the Thomas-Fermi approximation here to ob-
tain, after a straightforward integration,

ρ(r) = ρ0 − q2
0

4π
V (r), (2)

where q2
0 = 4kF /πaH , with aH the Bohr radius. The re-

sults are not strongly affected by this approximation. For
example, good agreement within natural limits has been
obtained previously [6] for the fullerene molecule described
in this way and without the simplifying linearization.
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At the same time, we can see that the density follows
the potential closely, which means that the validity of the
theory is ensured, as we already mentioned above, by an
appropriate constraint on the electron density. Of course
this approximate theoretical model loses its validity at
large distances from the ion locations because the elec-
tron density vanishes, and at very short distances, towards
the center of the cluster cage, where the density becomes
infinite with the potential used here.

Further, inside the electron gas of density ρ(r), we in-
troduce the cluster cage formed by the positive ion cores
with the spatial distribution given by ρ+(Ri), and apply
Poisson’s equation to the cluster as a whole:

∆V = 4πρ0 − q2
0V (r) − 4π

N∑
i

ziδ(r − Ri). (3)

We have to solve a self-consistent field problem that ac-
counts for the electron distribution profile in the presence
of a discrete positive background. The last term on the
right side of equation (3) represents the density of posi-
tive charge with Ri the average distance of an ion from
the center of the cluster and i is an index running over
the ions, each with electric charge zi. These locations are
chosen without regard to the stability of the configuration.

The self-consistent solution of this equation (subject to
appropriate boundary conditions, as described in Ref. [1])
gives the collective description of the cluster constituents,
electrons plus ions. The total effective Coulomb potential
inside the cluster is

Vin =
4π

q2
0

ρ0 +
A00

r
sin(q0r)

+
1

2π2

N∑
i=1

zi

∫
dk

exp[ik(r − Ri)]
k2 − q2

0

+
′∑

lm

l∑
j=0

Clj(−1)j

qj
0r

j+1
Alm

[
exp(q0r)

+ (−1)l−j exp(−q0r)
]
Ylm(θ, ϕ), (4)

everywhere except at r = Ri. The coefficients Alm must
be determined. Outside the cluster, a Laplace equation
applies and the solution vanishing at infinity is, with new
coefficients Blm,

Vout =
B00

r
+

∑
lm

′ Blm

rl+1
Ylm(θ, ϕ). (5)

If the potential is specified on the surface of a bounding
sphere (which has to contain most of the valence electron
density [1]), the coefficients entering (4) and (5) can be
determined by evaluating V (R, θ, ϕ) and using

Alm =
∫

dΩ Y ∗
lm(θ, ϕ)g(θ, ϕ), (6)

where g(θ, ϕ) is an arbitrary function. Here, g represents
a “pseudo-charge density” designed to be a smooth, node-
less function which, in order to maintain the electrical

neutrality of the entire system, has to agree exactly with
the true charge density outside the region bounded by the
super-sphere of radius R.

This generalization of the Coulomb interaction results
in a superposition of quantum oscillations given by long-
range contributions and screening on the smooth “semi-
classical” potential. In our previous report [1], we focused
on their interpretive aspects and specifically on extracting
insights regarding the geometric effects of Coulomb cor-
relations for any given spatial disposition of ionic cores.
Also, we explored the case of a foreign metal atom doping
an otherwise-homogeneous cluster of metal atoms. The ap-
proach, which has briefly been presented here, provides us
with a direct visualization of the way both the screening
effect and the Coulomb correlations change with changes
of the location of the impurity. This analysis is important
in the context of recent observations of the role played by
composition and geometry in changing the physical prop-
erties of metallic clusters [3,7,8].

It is to be expected that a study in the manner pre-
sented above of the case in which the impurity has an elec-
tronegative character may also bring interesting results.
This investigation is motivated by current developments
in the topic of molecular-doped metallic clusters [2,9]. Ap-
parently, the molecular core segregated around the elec-
tronegative impurity triggers a quantum size effect that
leads to a rescaling of the electron density and Fermi level
in the metallic shell of the cluster [2,10]. Therefore the
present study is aiming at a systematic, visual assessment
of changes induced in screening, Coulomb correlation and
effective potential by variations of the charge of the elec-
tronegative impurity in the molecular core.

We first recall our previous results for a metallic clus-
ter M13 with icosahedral symmetry. The ionic cores were
considered hard-spheres occupying a total volume in space
equal to Ωions . The unperturbed density of delocalized
electrons, ρ0, was expressed by

ρ0 =
3

4πrs
=

N

4πR3/3 − Ωions
, (7)

where rs is a point in the space available to the elec-
trons, the “electronic interspace”, outside the ion cores.
This means that we had subtracted from the entire vol-
ume of the super-sphere of radius R the volume assigned
to the ionic cores Ωions ; N is the total number of the de-
localized electrons, equal to the number of ionic charges.
The distance between the centers of the central and outer
ions is the bond length. For numerical calculation we set
Ri = 5.9 a.u. The core volume Ωions was computed by
taking into account the ionic radius. We considered this
radius equal to 2.74 a.u. so the resulting volume Ωions

was 1122 (a.u.)3. For this example, the electronic inter-
space was chosen to be rs = 0.75 a.u., in accordance with
the high-density electron gas requirement (rs � 1), and
by imposing that 95% of the total electrons must be in-
side the super-sphere, the super-sphere radius becomes
R = 6.5 a.u. In Figure 1 we can see the corresponding
effective potential inside the super-sphere as a function of
r and θ. This picture show the regular, collective char-
acteristics of the valence electrons we discussed above.
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Fig. 1. The effective electrostatic potential inside the cluster
cage for M13 for 0 < r < 6.5 a.u., 0 < θ < π rad and ϕ = 0.
The right axis, from 0 to just over 3, denotes the angle θ, from
0 to π.

The oscillations we observe are a manifestation of the self-
consistency of Poisson’s equation and represents the main
correlation effect of the electron gas in the metallic state
(the high-density limit).

We have shown that [1], despite the collective aspects
which contribute to the mean-field character of the ef-
fective potential, V (r) remains sensitive to the geome-
try and composition of the cluster. If, for example, one
host atom in the cluster cage is replaced by an impu-
rity atom A, the potential reflects this structural change.
Here, we re-explore this property for the archetypal case of
the impurity A being an electronegative atom. Evidence
reveals that the electronegative dopant localizes an ap-
propriate number of host atoms (according to the sto-
ichiometry rule) forming a “molecular” part inside the
cluster [2,9,10]. Subsequently, a reduced number of va-
lence electrons remains to be shared by the M metal ions.
In the following, we consider A a divalent impurity lo-
cated at the center of the cluster. For simplicity, we take
the core volume of this cluster to be the same as the 13M
ions. Figure 2a shows the corresponding effective electro-
static potential for the (AM2)M10 system. By comparing
this with the effective mean-field potential for M13, we
observe that the presence of the electronegative atom at
the center changes the topography of the potential sur-
face significantly. The potential becomes more bumpy at
the center, which means that the molecular core acts as
a barrier for the remaining valence electrons constrained
to move in the outer metallic shell. The confinement of
the electrons in the outer shell induces also changes in the
amplitudes of quantum oscillations relative to the previous
case. The screening among the electric charges is affected
by the rescaling of the electron density.

If we move the impurity to the outer shell, the dis-
turbance due to the localization of electrons involved in
screening goes toward the surface while the density peak
of the delocalized electrons shifts inward. (See Fig. 2b
and guide the eye along the r coordinate, from the ori-
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Fig. 2. (a) The corresponding effective electrostatic potential
for (AM2)M10 system for 0 < r < 6.5 a.u., 0 < θ < π rad and
ϕ = 0 with a divalent electronegative impurity in the center
of the icosahedral cluster cage. (b) A plot analogous to that
of (a), for the (AM2)M10 system with impurity at the vertex,
(θ = 0, ϕ = 0) and for 0 < r < 6.5 a.u.

gin towards the position of the impurity of coordinates
r = 5.9, θ = 0.) This behavior of the effective potential
is supplemented by the appearance of more pronounced
Coulombic correlations of the valence electrons near the
impurity. The disturbance of Coulomb correlations ap-
pears as irregular behavior along the θ coordinate at con-
stant r. Also, a substantial potential difference, about
3 a.u., can be seen in Figure 2b between the position of the
electronegative impurity (θ = 0, ϕ = 0) and the antipodal
position (θ = π, ϕ = 0) occupied by a host ion.

Generally, the same sort of dissimilarities can be no-
ticed in Figures 3a and 3b. Here, the impurity A is as-
sumed to carry four negative electric charges. From these
figures we can infer the change of the cluster potential due
to relocation of the impurity from the center of the cluster
(Fig. 3a) to the surface (Fig. 3b). Qualitatively, the effec-
tive potential, Coulomb correlations and screening have
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Fig. 3. (a) The effective electrostatic potential for (AM4)M8

system for 0 < r < 6.5 a.u., 0 < θ < π rad and ϕ = 0
with a tetravalent electronegative impurity in the center of the
icosahedral cluster cage. (b) The r − θ spatial dependence of
the effective electrostatic potential for (AM4)M8 system with
impurity at the position of the outermost ion shell.

the same behavior as above. However the range of vari-
ation of the cluster potential along the radial coordinate
and the amplitude of quantum oscillations, as well, are
quite different.

Because the effective cluster potential scales in its own
way, repositioning the impurity may, in turn, alter the or-
dering of the related electron shells, a phenomenon that
has been observed in many experiments [2,9,10]. There is
a large variety of models explaining the shell inversions for
doped metallic clusters (see references in [1,3]) and our
findings may be interpreted as a qualitative support for
these models. For example, in the frame of the phenomeno-
logical cluster shell models, the alteration of the electron
levels from 2s−1d−2f to 1d−2s−1f arises when the shape
of the potential changes from a harmonic-oscillator-like
potential towards a wine-bottle-like shape. Such a change
of the cluster potential can be caused for instance by re-

moving an impurity from the center of the cluster towards
the surface, as we have shown previously [1]. Apparently,
this is the experimental situation described in reference [3]
where the shell inversion induced by Y 3+ doping gold clus-
ters has been interpreted in terms of a structural effect.

As we can see, the potentials in Figures 2 and 3 display
barriers around the impurity that prevent the delocalized
electrons from moving freely throughout the entire bulk
volume. This observation is in agreement with the com-
mon picture of the “quantum size effect” [10]. It may also
be interpreted as qualitative support for using a “muffin-
tin” potential for a fast check of the physical properties of
molecular-doped metallic clusters [2].

The method we reviewed here is simple and flexible
and can yield, to some extent, accurate approximations
to the exact effective potentials with minor computing ef-
fort. Also, it has the advantage of physical immediacy, i.e.,
the present approach is easy to interpret. Presently, such
an interpretative theoretical tool may provide a valuable
way of guiding the analysis of experiment in the realm of
atomic clusters.

The authors would like to acknowledge the support of the Na-
tional Science Foundation for this research.
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